
RoboCup 2023 SPL BadgerBots Team
Description Paper

John Balis1, Yoon-Chae Na1, Adam Labiosa1, Arun Ravi1, and Josiah Hanna1

University of Wisconsin, Madison

1 Team Information

Our team name is BadgerBots and we are affiliated with the Computer Sci-
ences Department at the University of Wisconsin – Madison, which is located
in the state of Wisconsin in the United States of America. We are a group of
students (PhD, MS, and undergraduate) advised by Prof. Josiah Hanna. Our
team’s contact email is jphanna@cs.wisc.edu. We do not have a team website at
this time.

2 Code Usage

Our team codebase for the 2023 competition is based upon the BHuman 2022
code release . As described below, our primary contribution has been to replace
the high level behaviors written by BHuman with new, learned behaviors based
on deep reinforcement learning. As discussed below, we believe these changes
to be transformative in nature. Thus, as of now, our robots use the perception,
state-estimation, low-level motion control and communication modules provided
by BHuman. We thank BHuman for making their full software stack available.

In addition to code from BHuman, we also added the following free and open
source C++ libraries to our codebase:

1. GCE-Math C++ library
2. StatsLib C++ library
3. cpp-json

Additionally, we used the open source library stable-baselines3 to train our
policies, using proximal policy optimization[3][2].

Our team has not competed in prior RoboCup competitions, so there are no
prior code uses to report.

3 Own Contribution

The central objective of our team is to enable complex robot behaviors that are
completely learned from experience rather than manually programmed. Towards
this aim, we have developed preliminary abilities to use reinforcement learning

https://github.com/bhuman/BHumanCodeRelease/releases/tag/coderelease2022
https://github.com/bhuman/BHumanCodeRelease/releases/tag/coderelease2022
 https://github.com/kthohr/gcem
https://github.com/kthohr/stats
https://github.com/eteran/cpp-json
https://github.com/DLR-RM/stable-baselines3


2 Hanna et al.

(RL) algorithms to train deep neural network control behaviors that are the
basis of our robot’s high-level behaviors. Real-world robot soccer is a task that is
substantially more difficult than many of the tasks today in which RL algorithms
are developed and tested. Nevertheless, the ability to learn behaviors will likely
prove to be critical to realizing the RoboCup vision that a team of robots will
defeat the human world cup champions by the year 2050. By committing to RL
for developing our team, we are taking an important step towards this vision.

Our team is pursuing research in several directions to enable the use of mod-
ern RL algorithms for RoboCup.

1. RL in Abstract Simulators.
Training in simple, efficient simulators, then directly deploying on physical
robots. This capability matters for RoboCup because with a well-developed
pipeline for training policies, it potentially takes much less human program-
ming to get a learned behavior than a manually programmed one.

2. Automatic Simulator Grounding.
Simulators inherently fail to capture the complexity of real physical robots.
To address this, we are using recordings from from complex simulations and
the real robots to improve the realism of state transitions in the abstract
simulator. This research matters for Robocup because if an abstract simual-
tor can be made to more closely match the transition dynamics of the real
robots, it should create policies which work better with the physical robots.

3. Multi-agent Reinforcement Learning. Training multiple agents simul-
taneously so agents learn to coordinate with one anther. This direction is
crucial for RoboCup as we find that robots trained individually otherwise
require manual heuristics to prevent collisions and inefficiency.

4. Offline RL and Data Augmentation. Using recordings from the real
robots for policy-improvement through offline reinforcement learning, and
additionally augmenting these recordings with synthetic modified state tran-
sitions(for example, translating the robot and ball around the field). This
matters for Robocup, because it’s another potential approach to getting be-
haviors for the physical robots without having to manually program them.

In addition to enabling application of RL in RoboCup, the outcomes of these
research directions can be published at leading robotics conferences as well as
AI and machine learning conferences and journals.

To date, we have primarily relied upon RL in abstract simulation to train
deep neural network polices that are then directly used on the physical NAOs.
Below, we detail both how we use these trained policies on the physical robots
and how we train them. Our eventual goal is to create a RoboCup SPL team
where both high and low level control decisions are made by policies created
through reinforcement learning.

3.1 Real time inference on NaoV6

After training a control policy in our abstract simulator (e.g., a single-agent
keeper or attacker policy), we export our neural network policies from PyTorch



RoboCup 2023 SPL BadgerBots Team Description Paper 3

into .h5 files which specify the architecture and weights of the policy’s neural
network. These files are saved to a subfolder of our fork of BHumanCodeRe-
lease. We use a tool developed by BHuman called BHuman User shell(bush)
to deploy our fork to the NaoV6 robots. The policy architecture and parame-
ters are copied over in this process. The BHumanCodeRelease by default uses a
system of abstractions where high level control primitives call low level control
primitives according to some set of logical rules, heuristics, and location-based
potential fields. We use the pre-made skills for low level control, but replace
the high-level control logic for when the game state is playing with our own
high-level control system, which extracts observations in the format expected by
our neural policies using the perception code from BHumanCodeRelease. These
observations are then given to the neural policy for inference and the output of
the neural policy is used to parameterize low level skills. We aim to present a
team where each high level control task: push ball to goal, defend goal, kickoff,
etc. is performed only using a neural policy to choose parameters for low level
walk and kick skills. In the future, we aim to consider replacing more and more
components of the system with policies trained through RL, eventually replacing
low level control with neural policies.

In the current version of our code, we limit our neural control to when the
game is in the playing state. We have 3 distinct neural policies: a goalkeeper
policy, a defender policy, and an attacker policy. We assign the robot numbered
1 the goalie policy, the robots numbered 2 and 3 the defender policy, and the
robots numbered 4 and 5 the attacker policy. During kickoffs and penalty kicks,
we leave the BHuman high level control code in place. Observations for our poli-
cies observation spaces are constructed using data from the BHuman Perception
system, and the output of our neural policies is used to parameterize WalkAtRel-
ativeSpeedSkill. We additionally have trained an attacker policy which is capable
of kicking the ball into the goal. Currently it relies on the WalkAtRelativeSpeed
skill and WalkToBallandKick skill, which it is able to select and parameterize via
it’s action space, but due to how it was trained in our abstract simulation, only
kicks when it is right next to the ball, so it should be compatible with a lower
level ”Kick in place” skill(We want to rely on a minimal amount of BHuman
high level control code).

3.2 Abstract Simulation for Control

We propose a strategy for producing high-level control policies via reinforcement
learning in an abstract simulator. We created a reinforcement learning software
suite in python which we call AbstractSim. Which provides an OpenAI gym
interface for reinforcement learning[1]. This simulator models robots and balls
as point masses in 2 dimensions, and uses very simple calculations for deciding
on object collisions. These policies are trained to perceive the world as a vector
to numbers encoding their own position and angle on the field and the ball’s
position. Each of our three distinct policies is trained in its own environment in
AbstractSim. Figure 1 shows a screenshot of AbstractSim.



4 Hanna et al.

Fig. 1. A render of the push ball to goal environment in our abstract simulator.

4 Past History

We have no prior RoboCup competition experience as BadgerBots. Dr. Josiah
Hanna previously participated on the UT AustinVilla team from 2015 – 2019.

5 Impact

Our aim is to elevate reinforcement learning as a strategy for developing robot
control policies for the RoboCup Standard Platform League. Currently, many
teams spend dozens of hours writing and tweaking behaviors for very specific
situations (e.g., how should the robot move when near a goal post). This ap-
proach is likely not scalable as the league tries to play games with larger fields,
more robots, and increasingly complex rules. Automating behavior development
through reinforcement learning offers a path to scalable behavior development
with less developer hours. We are starting with high level control policies, and
eventually hope to replace even the low level controllers (i.e., walk and kick
engines) in our fork of BHumanCodeRelease 2022 with reinforcement-learning
derived neural control policies. Ultimately, we believe that learning will be cru-
cial for realizing the RoboCup vision and part of our team’s impact will be to
spur others in this direction.

For the wider robotics community, RL is a promising approach for developing
robots for tasks that are too complex for a programmer to specify optimal be-
havior. Demonstrating a competitive robot soccer team will require developing



RoboCup 2023 SPL BadgerBots Team Description Paper 5

techniques that can scale the complexity of environments in which robots can
be deployed. For the RL research community, RoboCup offers many challenges
for today’s RL algorithms and we hope that our efforts will inspire more RL
researchers to participate in RoboCup.

6 Video Presentation

We provide a link to our demonstration video: https://www.youtube.com/watch?v=TT-
3jCG4fqo

7 Acknowledgments

We would like to thank Shreyansh Sharma, Abishek Kumar, and Will Cong for
their contributions to our RoboCup effort.

References

1. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym (2016), https://github.com/openai/gym

2. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021), http://jmlr.org/papers/v22/20-1364.
html

3. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017). https://doi.org/10.48550/ARXIV.1707.06347,
https://arxiv.org/abs/1707.06347

https://www.youtube.com/watch?v=TT-3jCG4fqo
https://www.youtube.com/watch?v=TT-3jCG4fqo
https://github.com/openai/gym
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347

	RoboCup 2023 SPL BadgerBots Team Description Paper

